
#IUG2021#IUG2021Thursday, March 25, 2021

(Still) Playing With Matches
An update to using regular expressions in Create Lists

Richard V. Jackson
The Huntington Library,

Art Museum, and Botanical Gardens

#IUG2021

Purpose of this presentation

 Introduction to using regular expressions in Create Lists

 Cover the changes in recent releases of Sierra

 Basic regular expressions (BRE)

 Extended regular expressions (ERE)

 Provide many useful examples

 Discuss other recent changes in Create Lists

 Case-sensitive queries

 “AND NOT” Boolean operator

#IUG2021

What are regular expressions (regexes)?

 Specialized text processing tool for matching patterns of characters
 Find barcodes that are the wrong length or contain invalid characters
 Find invalid email addresses
 Find invalid subfield delimiters, wrong indicators, and other MARC coding errors
 Simplify searches for variant spellings or alternate character strings

 Widely used in many programming languages and applications

 Use certain special characters (metacharacters) to perform various functions within the regex

 More akin to the “has” condition than the “equal to” condition – record is retrieved if the field
being searched has (contains) characters matching the pattern of the regex

 Can be used with any field—MARC and non-MARC, variable-length and fixed-length
(except date fields) — in any type of record

#IUG2021

Some history

 Have been part of Create Lists since the character-based Innopac

 Prior to Sierra release 4.1 were based on the UNIX “egrep” standard
(egrep = extended global regular expression print)

 Beginning with Sierra 4.1 based on the POSIX standard — more compatible with PostGreSQL

 POSIX standard comes in different flavors:
 Basic Regular Expressions (BRE) — similar to ‘grep’

 Extended Regular Expressions (ERE) — similar to ‘egrep’

 Default in Create Lists is the less functional BRE

 Possible to use ERE — but the Sierra manual does not mention this

#IUG2021

Basic Regular Expressions

#IUG2021

Character classes – the period: .

 Period (or “dot”) matches any single character

matches titles published in Canada

matches item location codes such as bvid, rvid, hvidb

matches any subject heading with a subfield delimiter followed by any
subfield code followed by “maps” (upper or lower case)

BIBLIOGRAPHIC COUNTRY matches ..c

ITEM LOCATION matches .vid.

BIBLIOGRAPHIC SUBJECT matches |.maps

#IUG2021

Character classes: […]

 Used to represent any one character that is a member of a user-defined set:

[abcnp] matches any one of the letters a, b, c, n, or p

['"] matches a single quote or double quote

[a-z] matches any letter (upper or lower case)

[A-Za-z] with case-sensitive searching, matches upper and lower-case letters

[a-z0-9] matches any letter or number

[14-79] matches any of the numbers 1, 4, 5, 6, 7, or 9

[- ,.] matches a hyphen, space, comma, or a literal period [Note: to be
treated as a literal character, the hyphen must be listed first or last]

#IUG2021

Character classes: […]

matches items with status missing, billed/not paid, or lost and paid

matches call numbers containing 1967, 1968, or 1969, for example:

F574.D4|bF2 1969

PN1968.G7|bD68 2012

QK15|b.G744 1967

ITEM STATUS matches [mn$]

BIBLIOGRAPHIC CALL # matches 196[7-9]

#IUG2021

Negated character classes: [^…]

 Used to represent any character that is NOT one of the listed characters

[^] matches any character that is not a space

[^0-9] matches any character that is not a number

[^avx-z] matches any character except a, v, x, y, or z

At my library, BCODE3 codes l, n, and z are suppression codes. This search
retrieves records cataloged in February 2021 that are not suppressed.

BIBLIOGRAPHIC BCODE3 matches [^lnz]

AND BIBLIOGRAPHIC CAT DATE between 02-01-2021 02-28-2021

#IUG2021

Negated character classes: [^…]

 Negated character classes are very useful for finding errors.

For example, in MARC tag 650 the valid subfield codes for LCSH are
a, v, x, y, z (and possibly 0-3, 6, 8)

This will match fields such as:

650 0 |aSpecial libraries|California.

650 0 |aSculpture, English|d18th century|vExhibitions.

BIBLIOGRAPHIC MARC TAG 650 matches |[^avxyz]

#IUG2021

Quantifiers – the asterisk (“star”): *

 Quantifiers do not themselves represent characters
 They are given following a character or character class, allow that character or character class

to occur some number of times
 The asterisk (*) indicates the preceding may occur any number of times, that is, 0+ times

matches fields such as:

099 |aDVD 004278

099 |aDVD 4225

099 |aDVD04210 pt.2

 The asterisk is the only quantifier available under Basic Regular Expressions

BIBLIOGRAPHIC MARC TAG 099 matches dvd *0*42[0-9][0-9]

#IUG2021

A useful combination – dot-star: .*

 “Dot-star” = any number of any characters
 Use as “filler” between more specific expressions

matches fields such as:

245 10 |a1876 :|ba novel /|by Gore Vidal.

245 10 |aCalifornia :|ca history /|cAndrew F. Rolle.

BIBLIOGRAPHIC MARC TAG 245 matches |b.*|b

OR BIBLIOGRAPHIC MARC TAG 245 matches |c.*|c

#IUG2021

Position indicators – end of field: $
 The “$” position indicator “anchors” whatever precedes it to the end of the field
 It should always be given last in the regular expression

matches: F574.D4|bF2 1969
does not match: PN1968.G7|bD68 2012

matches title fields (245) where the last character is NOT “.”, “?”, or “!”

matches personal name authors (100) with birthdates in the 1800s followed
by a hyphen and the end of the field (i.e., no death date), e.g.:

100 1 |aMcIntyre, Benjamin Franklin,|d1827-

BIBLIOGRAPHIC MARC TAG 245 matches [^.?!]$

BIBLIOGRAPHIC MARC TAG 100 matches |d18[0-9][0-9]-$

BIBLIOGRAPHIC CALL # matches 196[7-9]$

#IUG2021

Position indicators – start of field: ^

 The “^” position indicator “anchors” whatever follows it to the beginning of the field
 It should always be given first in the regular expression

matches patron barcodes where the first character is not a ‘2’

With variable-length fields in MARC format, the field begins with the MARC tag.
This search finds imprint fields in tag 260 or 264 with 1st indicator 2 or 3.

PATRON BARCODE matches ^[^2]

BIBLIOGRAPHIC IMPRINT matches ^26[04][23]

Note that the “^” metacharacter does double duty:

^ = start of field [^…] indicates a negated character class

#IUG2021

“Escaping” a metacharacter: \…

 When you want to treat a metacharacter as a literal character, you must “escape” it, that is,
precede it with a backslash (“\”)

matches Note fields that end with 3 periods

matches name authority records in which the preferred name (100) or a see
reference (400) contains two (or more) literal asterisks:

100 0 Monsieur de ******
400 1 H*****x,|cCountess of

BIBLIOGRAPHIC NOTE matches \.\.\.$

AUTHORITY NAME AUTHR matches ^100.***

OR AUTHORITY NAME S FRM matches ^400.***

#IUG2021

Extended Regular Expressions

#IUG2021

Extended Regular Expressions (ERE)
 To switch to an ERE, precede the expression with: (?e)
 Using ERE enables additional metacharacters and metasequences

Metacharacters
used in BRE (they
still work in ERE):

Additional
metacharacters
used in ERE:

. Any character
[…], [^…] User-defined character classes

* Preceding can occur any number of times
^ … $ Start of field and end of field positions
\ Treat the following character as a literal

+ Preceding occurs one or more times
? Preceding is optional (occurs 0-1 times)

{min,max}, {num} Preceding occurs set number of times

(…) Grouping

… | … Alternative strings

#IUG2021

Quantifiers: + ?

matches 035 tags containing 1 or more numbers followed by <space>”repro”

matches Description fields (field tag ‘r’) containing either “color” or “colour”

+ Preceding character or character class occurs one or more times
? Preceding character or character class is optional (occurs 0-1 times)

BIBLIOGRAPHIC MARC TAG 035 matches (?e)[0-9]+ repro

BIBLIOGRAPHIC DESCRIPT. matches (?e)colou?r

#IUG2021

Quantifiers: {num} {min,max}

Patron barcode contains 1-13 characters between the start and end of field

Patron barcode contains 15 characters (it could contain more).

{min,max} Preceding character/character class occurs at least min and no more than max times
{num} Preceding character/character class occurs exactly num of times

PATRON BARCODE matches (?e)^.{1,13}$

PATRON BARCODE matches (?e).{15}

#IUG2021

Grouping: (…)

 Use parentheses to group a string of characters to be treated as a unit
 Grouping can be used to apply a quantifier to a string of characters:

matches “Hillary Clinton” or “Hillary Rodham Clinton”
(?e)hillary (rodham)?clinton

And as if things weren’t complicated enough already …
It’s possible to use grouping and “{…}” quantifiers under BRE — but you have to
escape the parentheses or braces: \(…\) \{min,max\} \{num\}

Under BRE, the above search would be:

(“?” is a literal under BRE, so you have to use “\{0,1\}” instead.)

More on this ahead when I discuss back references …

hillary \(rodham \)\{0,1\}clinton

#IUG2021

Alternation: | (vertical bar)

 The vertical bar (“|”) functions as a kind of OR—allowing any of 2 or more alternative strings to
satisfy the match. (Remember, with ERE you must escape the subfield delimiter — “\|”)

matches titles in French, Italian, or Spanish

 Use grouping to separate the alternative strings from the rest of the expression
“this and|or that” = “this and” OR “or that”
“this (and|or) that” = “this and that” OR “this or that”

BIBLIOGRAPHIC LANG matches (?e)fre|ita|spa

BIBLIOGRAPHIC NOTE matches (?e)includes bibliograph(y|ies|ical)

#IUG2021

Alternation: examples

 Finding bad non-filing indicators in the 245 tag:

 Alternative strings can include metacharacters and complex expressions:

BIB TITLE matches (?e)^245.0\|a"?(a |an |the)

AND BIB LANG equal to eng

BIB TITLE matches (?e)^245.0\|a"?(l'|l[ae] |les |une?)

AND BIB LANG equal to fre

MARC tag 245
with 2nd ind 0

Subfield “|a”

Optional
double quote

“a ”, “an ”, or “the ”

“l'” “la ”, “le ”, “les ”, “un ”, or “une ”

#IUG2021

A useful metasequence: [^|]+

 With MARC variable-length fields, use “[^|]+” (or “[^|]*”) to match the content of any subfield
 This search matches corporate body authority records that have exactly one subordinate body:

110 2 |aBrown University.|bLibrary

 On the other hand, this search will also match headings with 2 or more subfield b’s:

110 1 |aGreat Britain.|bParliament.|bHouse of Lords.|bRecord Office

 The expression “.+” will match as much as it can without causing the match to fail

AUTHORITY NAME AUTHR matches (?e)^110..\|a[^|]+\|b[^|]+$

AUTHORITY NAME AUTHR matches (?e)^110..\|a.+\|b.+$

#IUG2021

A practical example

 Looking at the problem of incorrect non-filing indicators from a different perspective:
245 14 |aThe art of D.H. Lawrence /|cby Keith Sagar.
245 14 |aEin Leben den Büchern gewidmet.
245 14 |aLe "Comus" de John Milton, masque neptunien.
245 04 |aPoblacht na h-Eireann =|bThe republic of Ireland.

 The above 245 tags all have non-filing indicator 4. The first 3 titles have a space or a double
quote as the 4th character following “|a”; the last title has an incorrect non-filing indicator.

matches 245 tags with 2nd indicator 4 in which the 4th character of the title
is not a space, double quote, or single quote/apostrophe, e.g.:
245 04 |aPoblacht na h-Eireann =|bThe republic of Ireland.

 You can construct similar queries for non-filing indicator 2, 3, 5, etc.

BIBLIOGRAPHIC TITLE matches ^245.4|a...[^ "']

#IUG2021

Back references

 Back references are used to “capture” and store a string of characters and then refer back to it
 Typically used in find/replace operations, which Create Lists cannot do
 Back references can now be used in Create Lists — but only under BRE!

 Capture a string using grouping: \(…\)

 Refer back to it with \1 (or \2, \3, … \9 for subsequent groupings)

520 Cuban tobacco and cigars became a luxury item that commanded commanded loyalty …
520 … and many illustrations including including sketches of such luminaries as …
520 … who was a great great great granddaughter of William Clift.

BIBLIOGRAPHIC MARC Tag 520 matches \([a-z]\{4,\} \)\1

Grouping captures a word of
4+ characters plus a space

The back reference enables the
match if the same string follows

#IUG2021

Back references

 Earlier I showed a regex to find a particular subfield code repeated (e.g., “… matches |b.*|b”)
 Back references can be used to find multiple occurrences of any subfield code

matches: 100 0 Edward,|cVI|cKing of England,|d1537-1553.
100 1 Saint-Germain,|ccomte de,|d-1784|c(Spirit) [this one’s legit]

 Knowledge of MARC is needed — many subfields are repeatable

 This query on the 245 looks for subfield codes other than n and p (which are repeatable):

matches:
245 10 |aEpigrammatum Graecorum /|annotationibus Ioannis …
245 10 |aElizabeth Harbert papers,|f1848-1950,|f(bulk 1880-1925).

BIBLIOGRAPHIC TITLE matches ^245.*\(|[^np]\).*\1

BIBLIOGRAPHIC AUTHOR matches ^100.*\(|.\).*\1

#IUG2021

Using Unicode notation

 In Sierra, special characters, symbols, and characters with diacritics may be entered using a
special Unicode notation – {u####} – where “####” is the hexadecimal code for the character:

{u00a9} = © {u014d} = ō {u00a3} = £ {u0152} = Œ

 This Unicode notation may be used in a regular expression.
 The Sierra manual states that you must “escape” the braces – e.g. \{u00A8\}. This is wrong!
 Characters represented in Unicode notation are interpreted and converted to the actual character

prior to processing by the regex engine

matches: 300 |a 2 p.ℓ., iii, [1], 21, [1] p., 1 ℓ. ;|c23 cm

matches any MARC field (tag ???) containing “curly” double quotes – “ or ”

BIBLIOGRAPHIC MARC Tag 300 has {u2113}

BIBLIOGRAPHIC MARC Tag ??? matches [{u201c}{u201d}]

#IUG2021

Using Unicode notation

 Other invalid characters and dirty data I occasionally check for:
{u01C2} = ǂ (OCLC subfield delimiter)
{u2018}, {u2019} = ‘ , ’ (left and right single quote/apostrophe)
{u2013} = – (en dash)
{u2014} = — (em dash)
{u00A0} = (non-breaking space [HTML])

 You cannot use regex metacharacters within Unicode notation. Expressions like this don’t work:
{u03..} {u03[7-9a-f][0-9a-f]}

 However, you may use a range of specific Unicode values in a character class:

matches 880 tags containing characters from the Greek/Coptic character set
 Handy website for looking up Unicode values: https://unicode-table.com/

BIBLIOGRAPHIC MARC Tag 880 matches [{u0370}-{u03ff}]

https://unicode-table.com/

#IUG2021

Case-sensitive queries in Create Lists

 Introduced in Sierra 5.0. Four new conditions now distinguish upper and lower-case letters:
 has (exact) [keyboard input: x]
 matches (exact) [j]

matches 6xx tags with 2nd ind. 0 where a subdivision begins with a lower-case letter:
650 0 |aViaducts|zFrance|xhistory|y19th century

651 0 |aPanama|xMaps|yca. 1914?

600 10 |aToler, Henry,|d-1824.|tUnion|xno union.

[used to be: “Union--no union”]

 starts with (exact) [s]
 ends with (exact) [z]

BIBLIOGRAPHIC MARC Tag 6???0 matches (exact) |[vxyz][a-z]

Odd bug: Case-sensitive searching using any of the “exact” conditions doesn’t work with
c-tagged fields in Bib or Item records. It does work if you search by MARC tag (e.g. 050)

#IUG2021

How regular expressions “see” variable-length MARC fields
 A complication in searching MARC fields is that they appear differently depending on whether

you’re searching by field group tag or MARC tag, or using “matches” or “matches (exact)”

p 264 1 |aSan Marino, CA :|bHuntington Library,|c1953.

BIBLIOGRAPHIC IMPRINT matches … sees the above field as:

BIBLIOGRAPHIC MARC Tag 264 matches … see the same field as:

BIBLIOGRAPHIC IMPRINT matches (exact) … sees the field as:

BIBLIOGRAPHIC MARC Tag 264 matches (exact) … sees the field as:

2 6 4 1 | a s a n m a r i n o , c a : | b h u n t i n g t o n l i b r a r y …

2 6 4 1 s a n m a r i n o , c a : | b h u n t i n g t o n l i b r a r y …

S a n M a r i n o , C A : | b H u n t i n g t o n L i b r a r y …

2 6 4 1 S a n M a r i n o , C A : | b H u n t i n g t o n L i b r a r y …

#IUG2021

Case-sensitive queries: finding titles in ALL CAPS

 Problem: Find titles that were keyed in using ALL CAPS.
 Solution: Use the “matches (exact)” condition, but rather than focus on “[A-Z]” plus other

characters that might be present, search for “[^a-z]” – the absence of lower-case letters

matches:
245 00 |aGENERAL PATTERSON'S CAMPAIGN IN VIRGINIA.
245 10 |aPHOTOGRAPHY'S RESPONSE TO CONSTRUCTIVISM.

A better version than allows additional subfields (subfield codes are lower-case):

matches:
245 10 SOUTHERN CALIFORNIA :|bTHE LAND OF FRUIT AND FLOWERS.
245 10 LIBERTY :|bTHE FRENCH AMERICAN STATUE IN ART AND HISTORY.

BIBLIOGRAPHIC TITLE matches (exact) (?e)^[^a-z]+$

BIB TITLE matches (exact) (?e)^[^a-z]+(\|[bcnp][^a-z]+)*$

#IUG2021

Using the “AND NOT” Boolean operator

 Introduced in Sierra 5.2 (Idea Lab winner of the Create Lists challenge in 2019)
 Makes it possible to retrieve records that do not match a particular regex:

matches patron barcodes that are longer or shorter than 14 digits (or that contain
non-numeric characters within the 14 characters)

 Without Boolean NOT, the above query would require 3 separate statements:

PATRON Barcode not equal to

AND NOT PATRON Barcode matches (?e)^[0-9]{14}$

PATRON Barcode matches (?e).{15}

OR PATRON Barcode matches (?e)^.{1,13}$

OR PATRON Barcode matches [^0-9]

#IUG2021

Using “AND NOT”: an example
 Boolean NOT becomes especially useful when the pattern you don’t want to match is complex
 Example: It’s possible to write a regex that defines a valid email address, but very difficult to

write one for every possible invalid one. Boolean NOT solves this problem. Here is my version
of one for a valid email address::

Features of this regex: Uses start and end of field (^ … $) to account for entire field; only one “@”
Name and domain components contain only letters, numbers, “_”, “-”, and “.“
Periods cannot appear at the beginning, end, or next to the “@” or another period
Field must end in 2-4 letters for the top-level domain

 This search will match email addresses such as:
No access to email asmith@Caltech
jgomez@wellesey@edu vjohnson@.ucla.edu

PATRON Email not equal to

AND NOT PATRON Email matches [the above regex]

(?e)^[a-z0-9_-]+(\.[a-z0-9_-]+)*@([a-z0-9_-]+\.)+[a-z]{2,4}$

#IUG2021

Using “AND NOT”: another example
 A similar technique could be used to find syntax errors in Library of Congress call numbers
 Here is a regex (to be used with “matches (exact)”) that will match most LC call numbers:

 This query finds bib records with a call number in MARC tag 050 or 090, where the call number
does not match the above pattern:

 Note: There are many valid LC call numbers that do not fit the typical pattern (e.g., regimental
histories, maps) and will be retrieved by this query. But this can help you find errors such as:

BX8608|b.c37 E185.97|b. P52 1923

DA 950|b.E39 N5055|bC6 1974b

BIB CALL # matches ^0[59]0

AND NOT BIB CALL # matches (exact) [the above regex]

(?e)^[A-HJ-NP-VZ][A-Z]{0,2}[1-9][0-9]{0,3}(\.[0-9]+)?(\|b\.[A-Z][0-9]+|\.[A-Z][0-9]+\|b[A-Z][0-9]+)

#IUG2021

A wish list

 Make ERE the default

 Fix the documentation!
(Sierra Guide > Creating Lists (Review Files) > Using Relational Operators [section on “matches“])

 Searches on fields defined by MARC tag should be consistent with those using
field group tags (do not collapse blank indicators or exclude initial subfield)

 Searches with “matches (exact)” should include MARC tag, indicators, and the
initial subfield delimiter

#IUG2021

Conclusion

 POSIX standard has made Create Lists regex more complicated but somewhat more
powerful

 Effective use of regular expressions in Create Lists requires …
 Understanding regex syntax
 Familiarity with your data and local practices
 Familiarity with the MARC format

 Learn through practice
 Create Lists makes an excellent “sandbox” for learning regular expressions
 Skills learned in Create Lists can be applied to other regex implementations

#IUG2021

THANK YOU
Questions?

Richard V. Jackson
The Huntington Library
rjackson@huntington.org

	(Still) Playing With Matches
	Purpose of this presentation
	What are regular expressions (regexes)?
	Some history
	Basic Regular Expressions
	Character classes – the period: .
	Character classes: […]
	Character classes: […]
	Negated character classes: [^…]
	Negated character classes: [^…]
	Quantifiers – the asterisk (“star”): *
	A useful combination – dot-star: .*
	Position indicators – end of field: $
	Position indicators – start of field: ^
	“Escaping” a metacharacter: \…
	Extended Regular Expressions
	Extended Regular Expressions (ERE)
	Quantifiers: + ?
	Quantifiers: {num} {min,max}
	Grouping: (…)
	Alternation: | (vertical bar)
	Alternation: examples
	A useful metasequence: [^|]+
	A practical example
	Back references
	Back references
	Using Unicode notation
	Using Unicode notation
	Case-sensitive queries in Create Lists
	How regular expressions “see” variable-length MARC fields
	Case-sensitive queries: finding titles in ALL CAPS
	Using the “AND NOT” Boolean operator
	Using “AND NOT”: an example
	Using “AND NOT”: another example
	A wish list
	Conclusion
	Slide Number 37

